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Abstract

We simulate the evolution of the intergalactic medium (IGM) in a universe domi-
nated by a cosmological constant. We find that within a few Hubble times from the
present epoch, the baryons will have two primary phases: one phase composed of
low-density, low-temperature, diffuse, ionized gas which cools rapidly with cosmic
time due to adiabatic exponential expansion, and a second phase of high-density,
high-temperature gas in virialized dark matter halos which cools much more slowly
by atomic processes. The mass fraction of gas in halos converges to ∼ 40% at late
times, about twice its calculated value at the present epoch. We find that in a few
Hubble times, the large scale filaments in the present-day IGM will rarefy and fade
away into the low-temperature IGM, and only islands of virialized gas will maintain
their physical structure. We do not find evidence for fragmentation of the diffuse
IGM at later times. More than 99% of the gas mass will maintain a steady ion-
ization fraction above 80% within a few Hubble times. The diffuse IGM will get
extremely cold and dilute but remain highly ionized, as its recombination time will
dramatically exceed the age of the universe.

Key words: cosmology: theory, cosmology: large-scale structures, methods:
numerical

1 Introduction

Independent data sets, involving the temperature anisotropies of the cosmic
microwave background (de Bernardis et al., 2000; Hanany et al., 2000; Spergel
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et al., 2003), the luminosity distances of Type Ia supernovae (Garnavich et
al., 1998; Riess et al., 1998; Perlmutter et al., 1999; Hanany et al., 2000), the
large-scale distribution of galaxies (Peacock et al., 2001; Verde et al., 2002),
and cluster abundances (Eke et al., 1998; Bahcall & Bode, 2003), appear to be
all consistent with a single set of cosmological parameters. In the concordance
Λ–Cold Dark Matter (ΛCDM) model, the universe is flat and its expansion
rate is currently accelerating; the cosmic mass density is dominated (∼ 70%)
by the vacuum (the so-called cosmological constant or “dark energy”) with
the remaining density mostly in the form of cold dark matter (∼ 26%) and
baryons (∼ 4%).

Given the emergence of a standard model in cosmology with a specific set
of parameters, it is of much interest to follow the immediate consequence of
these parameters in terms of the near future evolution of the ΛCDM universe.
While several recent studies considered the qualitative implications of the
accelerating universe by analytic means (Adams & Laughlin, 1997; Krauss
& Starkman, 2000; Chiueh & He, 2002; Gudmundsson & Björnsson, 2002;
Loeb, 2002), it is clear that further quantitative insight can be gained only
through direct numerical simulations. In Nagamine & Loeb (2003, hereafter
Paper I), we simulated the evolution of nearby large-scale structure using a
constrained realization of the Local Universe with only dark matter particles.
We have found that structure will freeze within two Hubble times from the
present epoch, and that the dark matter halo mass function will not evolve
subsequently. Busha et al. (2003) further studied the generic evolution of the
density profile around dark matter halos embedded in an accelerating universe.

In this paper we extend previous numerical work and study the evolution of
the baryonic component of the universe using a hydrodynamic cosmological
simulation. In Section 2 we describe the simulation. Images of the simulated
gas mass distribution and gas temperature distribution are presented in Sec-
tion 3. We describe the global evolution of gas temperature and overdensity in
Section 5, and provide a more quantitative analysis based on the distribution
functions of these quantities in Section 6 and 7. The ionization fraction of cos-
mic gas is analyzed in Section 8. Finally, we summarize our main conclusions
in Section 9.

2 Simulation

We carried out a hydrodynamic simulation with the concordance cosmological
parameters (ΩM,0, ΩΛ,0, Ωb, h, σ8, n)=(0.3, 0.7, 0.04, 0.7, 0.9, 1.0) from a
redshift z = 99 (i.e. a scale factor a = (1 + z)−1 = 0.01) through the present
time (z = 0, a = 1), and up to 6 Hubble times into the future (a = 166; ∼ 84
billion years from today). Because the present Hubble time tH ≡ 1/H0 = 14
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Gyr is very close to the current age of the Universe t0 = 13.5 Gyr in the
adopted cosmology, the epoch of a = 166 roughly corresponds to t = t0+6tH ≈
7tH from the Big Bang (t = 0), where a subscript zero denotes present-day
values.

We use the updated version of the parallel tree Smoothed Particle Hydro-
dynamics (SPH) code GADGET 1 (Springel et al., 2001). The comoving box
size of our simulation is 50h−1Mpc, and the particle number is 643 for the
gas and 643 for the dark matter, with corresponding particle masses mDM =
3.4× 1010h−1M¯ and mgas = 5.3× 109h−1M¯ (so that a group of ∼ 50 parti-
cles has a total mass comparable to that of the Milky Way galaxy). We adopt
the ‘entropy-conserving’ formulation of SPH as described by Springel & Hern-
quist (2002). The simulation includes a standard treatment of the radiative
cooling and heating of Katz et al. (1996) assuming that the gas is optically
thin and in ionization equilibrium (see Section 8 for the discussion on the
validity of this assumption at late times). The abundance of different ionic
species, including H0, He0, H+, He+, and He++, is computed by solving the
network of equilibrium equations self-consistently with a uniform ultra-violet
(UV) background radiation of a modified Haardt & Madau (1996) spectrum
and with complete reionization at z ∼ 6 (Davé et al., 1999; Becker et al.,
2001). The UV background (or, equivalently, the photoionization rate Γ of
the IGM) is linearly extrapolated beyond the present epoch, after which it
quickly approaches zero. We have tested the validity of this assumption by
carrying out another simulation with a maximum UV background field, where
the value of the photoionization rate was set equal to the z = 0 value and
remained constant afterwards. Even for this maximum UV background field,
the future thermal evolution of the IGM remained similar. The exact behavior
of the UV background field after z = 0 is unimportant because the photoion-
ization time-scale is rapidly increasing to values much longer than the Hubble
time. This follows from the fact that the cosmic volume element (by which the
ionizing photons are diluted) grows as ∝ a3 and a grows exponentially with

cosmic time, i.e. a ∝ exp{
√

ΩΛ,0H0t} at t À t0. The evolution of the neutral
hydrogen mass density in a similar simulation run was discussed by Nagamine
et al. (2003a).

Feedback from star formation and supernovae is formulated as in Springel &
Hernquist (2003a,b); the underlying assumptions are also reviewed in Nagamine
et al. (2003b). However, the details of the adopted star formation model should
not be very important for the results presented here since the heating of the gas
on large scales is dominated by the gravitationally-induced shocks. Although
the numerical resolution of our simulation is not adequate for following the
detailed star formation history of the Universe (see Springel & Hernquist,
2003b), it does capture well the large-scale properties of baryons in the IGM

1 http://www.MPA-Garching.MPG.DE/gadget/
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which are the focus of this work. Future simulation runs with a higher resolu-
tion and an improved model of star formation and supernova feedback could
address more complicate issues, such as the distribution of metals in the IGM.

Our simulation was performed at the Center for Parallel Astrophysical Com-
puting 2 at Harvard-Smithsonian Center for Astrophysics.

3 Images

Figure 1 shows the projected distribution of mass-weighted temperature (left
column) and the mass surface density (right column) of the gas as functions of
cosmic time in a slice with a comoving thickness of 10h−1Mpc and a comoving
width of 50h−1Mpc on a side.

As shown in Paper I, the evolution of large-scale structure in the dark matter
distribution freezes within two Hubble times from the present epoch. Simi-
larly, the right column of Figure 1 indicates that the gas distribution does
not evolve either at late times. The only noticeable change in comoving co-
ordinates relative to the present epoch is that the filaments thin out as their
mass is drained into X-ray clusters. The two visible X-ray clusters (one at
the top middle and the other at the bottom middle of this simulation) are
still connected by a low-temperature filament of gas and dark matter even at
t = t0 + 6tH. In physical coordinates, these filaments rarefy considerably as
the universe expands exponentially with cosmic time.

Due to the adiabatic expansion of the IGM, the temperature distribution of
the cosmic gas evolves dramatically with time. At t = t0, the high-temperature
clusters (with T > 107 K, indicated by yellow) are connected by filaments with
a somewhat lower temperature (105 < T < 107 K, indicated by red). As time
progresses, the red filaments cool down (T < 105 K in green), get thinner, and
eventually disappear into the dark background. Consequently, virialized dark
matter halos with gas temperature T ≥ 104 K are left as ‘island universes’
embedded within the low-temperature IGM.

In principle, it is possible for the IGM to fragment into baryonic objects (which
do not necessarily overlap with dark matter halos) due to its rapid adiabatic
cooling. We have tested for this possibility by applying the HOP grouping
algorithm (Eisenstein & Hut, 1998) to the gas particles in the simulation,
but found no evidence for such fragmentation. We caution, however, that
our numerical resolution is not adequate for probing fragmentation below the
mass-scale of Mgas ∼ 5× 1011h−1M¯.

2 http://cfa-www.harvard.edu/cpac/
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4 Growth Factor

In order to demonstrate the freezing of the structure formation in the future
from a different perspective, we examine the evolution of the growth factor of
linear density fluctuations in a ΛCDM universe. Figure 2 shows the growth
factor (Heath, 1977; Carroll, Press, & Turner, 1992) as a function of the log-
arithm of the scale factor, a,

D(a) ∝
1

a

da

dτ

a
∫

0

(

da′

dτ

)−3

da′, (1)

where

(

da

dτ

)2

= 1 + ΩM,0

(

1

a
− 1

)

+ ΩΛ,0(a
2 − 1), (2)

and τ = H0t. The curve is normalized to unity at a = 1. It clearly demon-
strates that the growth of structure ceases at about two Hubble times from
the present time in a Universe which is dominated by a cosmological con-
stant, consistently with the results of Paper I. This saturation is caused by
the exponential expansion of a(t) as driven by the cosmological constant.

5 Temperature – Density Diagram

Next we project the global evolution of the gas properties on the temperature–
gas density (T–ρ) plane. In Figure 3 we show the mass-weighted distribution
of baryons on the temperature – gas overdensity plane as a function of cosmic
time. The time and corresponding scale factor values are indicated in each
panel, and the plotted contours are equally spaced in six logarithmic intervals
between the minimum and maximum values on the plane.

The top left panel shows the familiar geometry of the gas distribution at the
present time; the solid line divides the gas into 3 different categories following
the criteria of Davé et al. (2001). As shown later, the dividing line of ρ/ 〈ρ〉 ≡
(1+δ) = 103 (where 〈ρ〉 is the mean density) has a special meaning in terms of
the future evolution of the IGM as well. The bottom left region of the diagram
corresponds to the diffuse IGM which has a low density and a low temperature.
Most of the gas mass in this region lies on the tight nearly-adiabatic power-law
relation, which can be described by analytic means (Hui & Gnedin, 1997). A
plume-shaped region of shock-heated gas extends above the horizontal solid
line at T = 105 K. The gas with temperatures 105 < T < 107 K is the so
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called warm-hot intergalactic medium (WHIM; Cen & Ostriker, 1999), and the
dense gas with T > 108 K is the hot gas in clusters of galaxies. In the current
study, the distinction between the warm-hot and hot gas is not particularly
important, and so we simply refer to them both as hot gas. Finally, the bottom
right portion of the diagram is occupied by condensed gas that has cooled
radiatively inside dark matter halos.

Within two Hubble times into the future (t = t0 + 2tH), the innermost con-
tour line splits into two islands, one for the low-density diffuse IGM and the
other for the gas in virialized dark matter halos. The overdensity of gas in
dense regions increases with time because the physical density there remains
nearly fixed while the background density rarefies rapidly due to its Hubble
expansion.

The T–ρ diagram is stretched into a more elongated shape in the distant
future. This elongation of the contour can be understood by considering the
gas in clusters of galaxies that have T = 107.5 K and overdensity of 200
at z = 0. The Bremsstrahlung (which dominates the cooling rate at this
temperature) cooling time of such gas is much longer than the current Hubble
time:

tcool ∼
2 · 3

2
kT

εB

∼ 102
(

200

ρ/ 〈ρ〉0

)

(

T

107.5 K

)1/2

tH, (3)

where εB ∝ T 0.5ρ is the Bremsstrahlung cooling rate per electron at a tem-
perature T and density ρ of the cluster gas. The factor of 2 in the numerator
accounts for the thermal energy of the protons in addition to that of the cool-
ing electrons. Because of this long cooling time, such gas in the outskirts of
clusters of galaxies will remain hot in the distant future.

The contour peak at T ∼ 106 K and log(ρ/ 〈ρ〉) > 3.0 corresponds to gas
inside galaxies and groups of galaxies. For this gas, the significance of metal
line cooling increases with time as the gas gets enriched with supernova ejecta,
and the cooling time of the enriched gas is already shorter than the Hubble
time at present. Since our simulation does not include metal cooling and star
formation is not treated accurately due to lack of numerical resolution, we
cannot rule out the possibility that the peak at T ∼ 106 K disappears at late
times.

After six Hubble times (t = t0 + 6tH), the flat bottom of the contour plot
reaches the temperature floor of T = 5 K, which is set by hand in the simu-
lation and is not physical. The virialized gas maintains a temperature above
T = 104 K because its cooling curve drops sharply below this temperature.
The vertical solid line indicates the dividing overdensity of 103. The horizontal
solid line at T = 103.2K will be discussed later.
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6 Distribution & Evolution of Gas Overdensity

To describe the evolution of the IGM more quantitatively, we show in Figure 4
the mass-weighted distribution function of the cosmic gas as a function of
its density contrast dfM/d log(ρ/ 〈ρ〉) [panel (a)], and the cumulative mass
fraction of gas with overdensity larger than a specific value fM(> ρ/ 〈ρ〉)
[panel (b)]. Hereafter, we denote the gas mass fraction in general by fM .

Panel (a) indicates that the gas distribution becomes bimodal as time pro-
gresses; the bottom of the valley that separates the gas into two islands is
located near a density contrast ρ/〈ρ〉 ≡ 1 + δ = 103 at t = t0 + 6tH, as indi-
cated by the vertical dotted line. This makes 1 + δ = 103 a natural choice for
the borderline separating the gas into its two phases: the diffuse IGM and the
phase which remains bound in virialized dark matter halos (as marked by the
solid lines in Figure 3).

Panel (b) shows that more gas shifts toward higher overdensities as it falls
into the potential wells of dark matter halos at late times. This is partially
because the physical density in virialized halos remains nearly the same while
the background density rarefies rapidly due to the exponential expansion of
the universe. From this panel, we derive the gas mass fraction that is in the
region above some overdensity value, as indicated by the dashed lines. We
find that the gas mass fraction with 1 + δ > 103 is 10% (40%) at t = t0
(t = t0 + 6tH). The gas mass fraction with 1 + δ > 200 is 22% (43%) at
t = t0 (t = t0 + 6tH). Finally, the fraction with 1 + δ > 17.6 is 47% (58%)
at t = t0 (t = t0 + 6tH). These results are summarized in Figure 5, which
shows the gas mass fraction fM(> 1 + δth) with density contrast higher than
1 + δth = ρ/ 〈ρ〉 = 17.6 (solid), 200 (short-dashed), and 1000 (long-dashed
line), as a function of cosmic time from the present epoch in units of the
current Hubble time. This figure shows the convergence of the amount of gas
that is trapped inside virialized dark matter halos in two Hubble times from
the present time. The gas mass fractions with 1 + δ > 200 and > 1000 both
converge to ∼ 40% at t = t0 + 6tH. At the lower threshold overdensity of
1 + δ = 17.6, the mass fraction increases to 58%. The threshold value of 17.6
was derived in Paper I as the critical overdensity above which mass remains
bound to virialized objects at late times.

7 Distribution & Evolution of Gas Temperature

Figure 6 shows the mass-weighted distribution function of gas as a function of
the logarithm of the temperature dfM/d log T [panel (a)], and the cumulative
mass fraction of gas fM(> log T ) with a temperature larger than a certain
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value [panel (b)].

Panel (a) shows that the minimum IGM temperature decreases as a function
of time due to the expansion of the Universe, while the maximum temperature
stays constant at T = 108 K due to the lack of growth in the potential well
depth of dark matter halos. The artificial cutoff at the temperature floor of
T = 5 K is set by hand in the simulation.

Panel (b) implies that the mass fraction of gas with T > 105 K is roughly 60%
at t = t0, and that this fraction decreases to 20% at t = t0 + 6tH. The mass
fraction of gas with T > 103.2 K is 40% at t = t0 + 6tH (corresponding to the
mass fraction above 1 + δ = 103 in Figure 4).

Figure 7 shows the evolution of the maximum temperature for gas with a fixed
gas mass fraction of 40% in lower density regions as a function of the logarithm
of the scale factor. This quantity measures the evolution of the temperature
at fM(log T ) = 0.6 in panel (b) of Figure 6 because Figure 6 was a cumulative
plot. Figure 7 indicates that the temperature of the diffuse IGM cools down
roughly according to the adiabatic expansion law, T ∝ a−2, as illustrated by
the dashed line. We confirmed that the result doesn’t change very much even
in the ‘max-UV field’ run which we described in Section 2.

Figure 8 shows the mean (mass-weighted) temperature of all the gas in the
Universe, 〈T 〉, as a function of the scale factor, a = (1 + z)−1. The upper
horizontal axis indicates the corresponding redshift, z. It can be seen that
the beginning (redshifts z > 20) of the thermal history of the diffuse IGM are
dominated by the adiabatic cooling. This is also true for the end of the thermal
history of the diffuse IGM as we already showed in Figure 6. In between these
two cooling phases, there is an epoch of structure formation during which the
IGM is heated through large-scale shocks or the radiation emitted by stars
and quasars. The value of 〈T 〉 at late times is dominated by the gas trapped
in virialized dark matter halos which will cool only slowly with cosmic time.
Overall, we find that 〈T 〉 will peak at a value of ∼ 2× 106 K at a ∼ 2.5, only
one Hubble time (∼ 14 billion years) from the present epoch. The appearance
of the peak value of 〈T 〉 in the relatively near future simply reflects the lack
of subsequent growth in the mass function of virialized halos.

8 Ionization Fraction

Finally, we consider the ionization fraction of the cosmic gas, which we define
as
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Fion =
ne

ne + nn

, (4)

where ne is the electron number density, and nn is the total number density of
neutral atoms. Since our simulation includes only the ionization of hydrogen
and helium, nn = nHI+ nHeI. With this definition, Fion → 1 for a fully ionized
gas and Fion → 0 for fully neutral gas.

Figure 9 shows the mass-weighted distribution of the ionization fraction as a
function of the comoving gas overdensity. The contours and the gray levels are
displayed on six equal logarithmic intervals in between minimum and maxi-
mum values of the projected gas mass density. The top left panel indicates
that most of the gas at t = t0 is fully ionized except for a pockets of neu-
tral gas in star forming regions at log ρ/ 〈ρ〉 ∼ 6.0. At even higher densities
(6 < log ρ/ 〈ρ〉 < 8), the gas is ionized again due to supernovae feedback.

The neutral fraction in star forming regions (corresponding to the narrow
contour structure extending down to the lower-right corner of each panel at
log ρ/ 〈ρ〉 > 6) continues to grow until t ≈ t0 + 2tH, but diminishes after-
wards as the neutral gas is consumed by star formation. Additional infall onto
virialized halos is suppressed in an exponentially expanding universe. After
t = t0 + 3tH, recombination is only important in the dense cores of virialized
halos, and the IGM remains ionized as it continues to expand and cool. The
distribution of Fion in the IGM does not evolve at later times.

Figure 10 shows the mass-weighted distribution function of the gas mass as
a function of its ionization fraction, i.e. dfM/d logFion. The lower end of the
distribution gradually extends to lower Fion values between t = t0 and t =
t0 + 3tH, although most of the mass is still fully ionized (logFion = 0.). At
t = t0 + 3tH, 99% of the gas mass has an ionization fraction higher than 80%.
Subsequently, the Fion distribution freezes outside the dense cores of virialized
halos.

In our simulation, we have assumed that the gas is optically thin and in ion-
ization equilibrium when computing the abundance of different ionic species.
This assumption is of course only valid in the high density region where the
collisional ionization and recombination time scales are shorter than the Hub-
ble time. We find that the ionization fraction evolve only for log(ρ/ 〈ρ〉) > 4
until t = t0 + 3tH. In this regime of densities, the recombination rate is still
higher than 1/t, and the assumption of ionization equilibrium is justified. Af-
ter t = t0 + 3tH, the recombination time-scale becomes much longer than the
Hubble time for most of the plotted range of densities, and the distribution
of ionization fraction of the IGM is expected to freeze for gas that has not
assembled into dark matter halos.
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9 Conclusions

We have simulated the future evolution of the intergalactic medium in a uni-
verse dominated by a cosmological constant, focusing on the overdensity, tem-
perature, and ionization fraction of the cosmic gas.

We have found that within a few Hubble times from the present epoch,
the baryons will split into two major phases: one phase of low-density, low-
temperature, diffuse IGM which cools adiabatically (with T ∝ a−2; see Fig-
ure 7), and a second phase of high-density, high-temperature gas in virialized
dark matter halos which cools more slowly by up to two orders of magnitude
[see Equation (3)]. The mass fraction of gas which is confined in virialized dark
matter halos (defined as regions with an overdensity larger than ∼ 200) con-
verges to ∼ 40% at late times, about twice its calculated value at the present
epoch.

The simulated maps of gas temperature show that the large-scale filaments
disperse and merge with the low-temperature IGM background after a few
Hubble times, and only the ‘island universes’ of virialized gas maintain their
physical structure. Although these islands are linked by filaments of dark
matter and gas in comoving coordinates, the filaments rarefy and disperse
in physical coordinates due to the exponential temporal growth of the cosmic
scale factor, a. We do not find evidence for fragmentation of the baryons in
the IGM at later times above the mass-scale of Mgas ∼ 5× 1011h−1M¯.

The recombination time of the expanding IGM exceeds the Hubble time by a
factor that grows rapidly in the future, and so most of the IGM gas remains
ionized. After three Hubble times from the present epoch, 99% of the gas mass
maintains an ionization fraction above 80%. If the Universe is indeed domi-
nated by a true cosmological constant, then the diffuse IGM outside virialized
dark matter halos will get extremely cold but remain highly ionized.
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Fig. 1. Projected distribution of mass-weighted gas temperature, T , in K (left col-
umn) and projected surface gas mass density (right column) for a slice with a
comoving thickness of 10h−1Mpc and a comoving width of 50h−1Mpc on a side.
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Fig. 2. Growth factor as a function of the scale factor ‘a’. The curve is normalized to
unity at a = 1, as indicated by the dotted line. The growth factor saturates within
two Hubble times from the present epoch.
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Fig. 3. Snapshots of the mass-weighted gas temperature T (in K) vs. gas density
(relative to the mean value 〈ρ〉 at each epoch) for t = t0, t0+ tH, t0+2tH, t0+3tH,
t0 + 5tH, and t0 + 6tH. The six contours are equally spaced in logarithmic intervals
between the minimum and maximum values of the gas mass distribution on the
plane. See the text for the description of the solid lines in the top left and bottom
right panels.
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Fig. 4. Panel (a): Mass-weighted, differential distribution function of gas overdensity
(relative to the mean density 〈ρ〉 at each epoch), i.e. dfM/d log(ρ/ 〈ρ〉), for t = t0,
t0 + 2tH, and t0 + 6tH from left to right. Hereafter we denote the gas mass fraction
in general by fM . A density contrast of 103 is indicated by the dotted line which
splits the distribution into two regimes at t = t0 + 6tH. Panel (b): Cumulative gas
mass fraction with overdensity above a specific value, i.e. fM (> ρ/ 〈ρ〉), for t = t0,
t0+2tH, t0+3tH, t0+4tH, t0+5tH and t0+6tH, from left to right. The characteristic
values to note are indicated by the dashed lines, and are described in the text.
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Fig. 5. Gas mass fraction fM (> 1 + δth) with density contrast higher than
1 + δth = ρ/ 〈ρ〉 = 17.6 (solid), 200 (short-dashed), and 1000 (long-dashed line),
as a function of cosmic time from the present epoch in units of the current Hubble
time. The initial and final values of the gas mass fractions over the plotted range of
time are mentioned next to each of the curves.
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Fig. 6. Panel (a): Mass-weighted, differential distribution function of gas tempera-
ture T (in K), i.e. dfM/d log T , at t = t0, t0 + 2tH, and t0 + 6tH. The distribution
is truncated artificially at log(T/K) = 0.7. Panel (b): Cumulative mass fraction of
gas with temperature above a certain value for t = t0, t0 + 2tH, t0 + 3tH, t0 + 4tH,
t0+5tH, and t0+6tH from right to left. See the text for the description of the dashed
lines.
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Fig. 7. Evolution of the maximum temperature for gas with a fixed mass fraction
of 40% in lower density regions as a function of the logarithm of the scale fac-
tor. This quantity measures the evolution of the temperature at the fixed value of
fM (> log T ) = 0.6 in panel (b) of Figure 6 because Figure 6 is a cumulative plot.
The curve indicates that the temperature of the diffuse IGM cools roughly according
to the adiabatic expansion law T ∝ a−2, shown by the dashed line.
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Fig. 8. Mass-weighted mean temperature of the gas in the Universe, 〈T 〉, as a func-
tion of the scale factor, a = (1 + z)−1. The upper horizontal axis indicates the
corresponding redshift, z.
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Fig. 9. Mass-weighted distribution of ionization fraction of gas as a function of
gas overdensity (relative to the mean value 〈ρ〉) at t = t0, t0 + tH, t0 + 2tH, and
t0 + 3tH. The six contour levels are equally spaced in logarithmic intervals between
the minimum and maximum values of the gas mass distribution on the plane.
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Fig. 10. Mass-weighted differential distribution function of the ionization fraction
of the gas, i.e. dfM/d logFion, at t = t0, t0 + tH, t0 + 2tH, and t0 + 3tH.
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